Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(1): 016801, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478420

RESUMO

We report an intrinsic strain engineering, akin to thin filmlike approaches, via irreversible high-temperature plastic deformation of a tetragonal ferroelectric single-crystal BaTiO_{3}. Dislocations well-aligned along the [001] axis and associated strain fields in plane defined by the [110]/[1[over ¯]10] plane are introduced into the volume, thus nucleating only in-plane domain variants. By combining direct experimental observations and theoretical analyses, we reveal that domain instability and extrinsic degradation processes can both be mitigated during the aging and fatigue processes, and demonstrate that this requires careful strain tuning of the ratio of in-plane and out-of-plane domain variants. Our findings advance the understanding of structural defects that drive domain nucleation and instabilities in ferroic materials and are essential for mitigating device degradation.

2.
Nat Commun ; 14(1): 1525, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934123

RESUMO

Reversible field-induced phase transitions define antiferroelectric perovskite oxides and lay the foundation for high-energy storage density materials, required for future green technologies. However, promising new antiferroelectrics are hampered by transition´s irreversibility and low electrical resistivity. Here, we demonstrate an approach to overcome these problems by adjusting the local structure and defect chemistry, delivering NaNbO3-based antiferroelectrics with well-defined double polarization loops. The attending reversible phase transition and structural changes at different length scales are probed by in situ high-energy X-ray diffraction, total scattering, transmission electron microcopy, and nuclear magnetic resonance spectroscopy. We show that the energy-storage density of the antiferroelectric compositions can be increased by an order of magnitude, while increasing the chemical disorder transforms the material to a relaxor state with a high energy efficiency of 90%. The results provide guidelines for efficient design of (anti-)ferroelectrics and open the way for the development of new material systems for a sustainable future.

3.
Nat Commun ; 13(1): 6676, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335109

RESUMO

Dislocations are usually expected to degrade electrical, thermal and optical functionality and to tune mechanical properties of materials. Here, we demonstrate a general framework for the control of dislocation-domain wall interactions in ferroics, employing an imprinted dislocation network. Anisotropic dielectric and electromechanical properties are engineered in barium titanate crystals via well-controlled line-plane relationships, culminating in extraordinary and stable large-signal dielectric permittivity (≈23100) and piezoelectric coefficient (≈2470 pm V-1). In contrast, a related increase in properties utilizing point-plane relation prompts a dramatic cyclic degradation. Observed dielectric and piezoelectric properties are rationalized using transmission electron microscopy and time- and cycle-dependent nuclear magnetic resonance paired with X-ray diffraction. Succinct mechanistic understanding is provided by phase-field simulations and driving force calculations of the described dislocation-domain wall interactions. Our 1D-2D defect approach offers a fertile ground for tailoring functionality in a wide range of functional material systems.

4.
Dalton Trans ; 51(46): 17827-17835, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36354051

RESUMO

Lead zirconate (PbZrO3, PZ) is a prototype antiferroelectric (AFE) oxide from which state-of-the-art energy storage materials are derived by chemical substitutions. A thorough understanding of the structure-property relationships of PZ-based materials is essential for both performance improvement and the design of more environmentally friendly replacements. (Pb1-xBax)ZrO3 (PBZ) can serve as a model system for studying the effect of A-site substitution in the perovskite lattice, with barium destabilizing the AFE state. Here, the two-dimensional 207Pb solid-state NMR spectra of PZ and PBZ were recorded to analyze the local structural role of barium substitution. At low substitution levels, 207Pb NMR spectroscopy reveals the presence of Pb-O bond length disorder. Upon crossing the threshold value of x for the macroscopic phase transition into a ferroelectric (FE) state, the barium cations cause local-scale lattice expansions in their vicinity, resulting in the collapse of two lead lattice sites into one. The stabilization of the larger volume site coincides with the favoring of larger lead displacements. We also observed more covalent bonding environments which may originate from the lower polarizability of the barium cations, facilitating the formation of stronger Pb-O bonds in their vicinity. From the local structural point of view, we propose that the substitution-induced AFE → FE phase transition is therefore related to an increasing correlation of larger lead displacements in larger oxygen cavities as the barium content increases. Our results also highlight 207Pb NMR spectroscopy as a valuable method for the characterization of the structure-property relationships of PbZrO3-based AFE and FE oxides.

5.
Science ; 372(6545): 961-964, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34045350

RESUMO

Defects are essential to engineering the properties of functional materials ranging from semiconductors and superconductors to ferroics. Whereas point defects have been widely exploited, dislocations are commonly viewed as problematic for functional materials and not as a microstructural tool. We developed a method for mechanically imprinting dislocation networks that favorably skew the domain structure in bulk ferroelectrics and thereby tame the large switching polarization and make it available for functional harvesting. The resulting microstructure yields a strong mechanical restoring force to revert electric field-induced domain wall displacement on the macroscopic level and high pinning force on the local level. This induces a giant increase of the dielectric and electromechanical response at intermediate electric fields in barium titanate [electric field-dependent permittivity (ε33) ≈ 5800 and large-signal piezoelectric coefficient (d 33*) ≈ 1890 picometers/volt]. Dislocation-based anisotropy delivers a different suite of tools with which to tailor functional materials.

6.
Inorg Chem ; 57(11): 6549-6560, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29749739

RESUMO

The Ruddlesden-Popper (K2NiF4) type phase La2NiO3F2 was prepared via a polymer-based fluorination of La2NiO4+ d. The compound was found to crystallize in the orthorhombic space group Cccm ( a = 12.8350(4) Å, b = 5.7935(2) Å, c = 5.4864(2) Å). This structural distortion results from an ordered half occupation of the interstitial anion layers and has not been observed previously for K2NiF4-type oxyfluoride compounds. From a combination of neutron and X-ray powder diffraction and 19F magic-angle spinning NMR spectroscopy, it was found that the fluoride ions are only located on the apical anion sites, whereas the oxide ions are located on the interstitial sites. This ordering results in a weakening of the magnetic Ni-F-F-Ni superexchange interactions between the perovskite layers and a reduction of the antiferromagnetic ordering temperature to 49 K. Below 30 K, a small ferromagnetic component was found, which may be the result of a magnetic canting within the antiferromagnetic arrangement and will be the subject of a future low-temperature neutron diffraction study. Additionally, density functional theory-based calculations were performed to further investigate different anion ordering scenarios.

7.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28985006

RESUMO

Self-assembly of nanoparticles (NPs) forming unique structures has been investigated extensively over the past few years. However, many self-assembled structures by NPs are irreversible, because they are generally constructed using their suspensions. It is still challenging for NPs to reversibly self-assemble in dry state, let alone of polymeric NPs with general sizes of hundreds of nm. Herein, this study reports a new reversible self-assembly phenomenon of NPs in dry state, forming thermoreversible strip-like supermolecular structures. These novel NPs of around 150 nm are perfluorinated surface-undecenoated cellulose nanoparticles (FSU-CNPs) with a core-coronas structure. The thermoreversible self-assembled structure is formed after drying in the air at the interface between FSU-CNP films and Teflon substrates. Remarkably, the formation and dissociation of this assembled structure are accompanied by a reversible conversion of the surface hydrophobicity, film transparency, and anisotropic properties. These findings show novel feasibility of reversible self-assembly of NPs in dry state, and thereby expand our knowledge of self-assembly phenomenon.

8.
Solid State Nucl Magn Reson ; 84: 227-233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28673726

RESUMO

The spinning sidebands envelope of satellite transitions often display an asymmetric shape, which is caused by an asymmetric response of the NMR probe circuit. In this work, we revisit the basic concepts of the RLC circuit at the heart of every NMR probe and present two approaches capable of minimizing this artifact. While the first one consists of deliberately mistuning the probe, the second one relies on measuring the probe's response function and deconvoluting its contribution from the spectra. Both approaches are validated with 23Na NMR spectra of a lead-free relaxor ferroelectric (BNT-1BT). This material is particularly suitable as an example of the applicability of both strategies for samples with a disordered local structure.

9.
Sci Rep ; 6: 31739, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27545094

RESUMO

Lead-based relaxor ferroelectrics are key functional materials indispensable for the production of multilayer ceramic capacitors and piezoelectric transducers. Currently there are strong efforts to develop novel environmentally benign lead-free relaxor materials. The structural origins of the relaxor state and the role of composition modifications in these lead-free materials are still not well understood. In the present contribution, the solid-solution (100-x)(Bi1/2Na1/2)TiO3-xBaTiO3 (BNT-xBT), a prototypic lead-free relaxor is studied by the combination of solid-state nuclear magnetic resonance (NMR) spectroscopy, dielectric measurements and ab-initio density functional theory (DFT). For the first time it is shown that the peculiar composition dependence of the EFG distribution width (ΔQISwidth) correlates strongly to the dispersion in dielectric permittivity, a fingerprint of the relaxor state. Significant disorder is found in the local structure of BNT-xBT, as indicated by the analysis of the electric field gradient (EFG) in (23)Na 3QMAS NMR spectra. Aided by DFT calculations, this disorder is attributed to a continuous unimodal distribution of octahedral tilting. These results contrast strongly to the previously proposed coexistence of two octahedral tilt systems in BNT-xBT. Based on these results, we propose that considerable octahedral tilt disorder may be a general feature of these oxides and essential for their relaxor properties.

10.
J Am Chem Soc ; 137(24): 7718-27, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26034996

RESUMO

Air-stable and homogeneous gold nanoparticles (AuNPs, 1a-5a) ligated by various secondary phosphine oxides (SPOs), [R(1)R(2)P(O)H] (R(1) = Naph, R(2) = (t)Bu, L1; R(1) = R(2) = Ph, L2; R(1) = Ph, R(2) = Naph, L3; R(1) = R(2) = Et, L4; R(1) = R(2) = Cy, L5; R(1) = R(2) = (t)Bu, L6), with different electronic and steric properties were synthesized via NaBH4 reduction of the corresponding Au(I)-SPO complex. These easily accessible ligands allow the formation of well dispersed and small nanoparticles (size 1.2-2.2 nm), which were characterized by the use of a wide variety of techniques, such as transmission electron microscopy, thermogravimetric analysis, UV-vis, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), and cross polarization magic angle spinning (CP MAS) NMR spectroscopy. A pronounced ligand effect was found, and CP MAS NMR experiments enabled us to probe important differences in the polarity of the P-O bond of the SPOs coordinated to the nanoparticle surface depending on the type of substituents in the ligand. AuNPs containing aryl SPOs carry only SPO anions and are highly selective for aldehyde hydrogenation. AuNPs of similar size made with alkyl SPOs contain also SPOH, hydrogen bonded to SPO anions. As a consequence they contain less Au(I) and more Au(0), as is also evidenced by XPS. They are less selective and active in aldehyde hydrogenation and now show the typical activity of Au(0)NPs in nitro group hydrogenation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...